//MooCanvas, My Object Oriented Canvas Element. Copyright (c) 2007 Olmo Maldonado, , MIT Style License. /* Script: Canvas.js Contains the class. Dependencies: MooTools, Element, and its dependencies Author: Olmo Maldonado, Credits: Lightly based from Ralph Sommerer's work: Moderately based from excanvas: Great thanks to Inviz, , for his optimizing help. License: MIT License, */ /* Class: Canvas Creates the element and extends the element with getContext if not defined. Arguments: id - The ID of the canvas element props - Optional properties for the canvas element, which also gets passed to the new Element Example: > var cv = new Canvas('cv'); > var ctx = cv.getContext('2d'); > > $(document.body).adopt(cv); */ var MooCanvas = new Class({ initialize: function(id, props) { var el; if($type(id) == 'string') { props = $merge({width: 300, height: 150}, props, {'id': id}); el = new Element('canvas', props); if(!el.getContext) { if(!CanvasRenderingContext2D.cssFixed) { document.createStyleSheet().cssText = 'canvas{display:inline-block;overflow:hidden;text-align:left;cursor:default;}' + 'v\\:*{behavior:url(#default#VML)}' + 'o\\:*{behavior:url(#default#VML)}'; CanvasRenderingContext2D.cssFixed = true; } el.set({ styles: { width: props.width, height: props.height, display: 'inline-block', overflow: 'hidden' }, getContext: function() { this.context = this.context || new CanvasRenderingContext2D(el); return this.context; } }); } } return el; } }); /* Class: CanvasRenderingContext2D Context2D class with all the Context methods specified by the WHATWG, Arguments: el - Element requesting the context2D */ var CanvasRenderingContext2D = new Class({ initialize: function(el) { this.parent = el; this.fragment = document.createDocumentFragment(); this.element = new Element('div', { styles: { width: el.clientWidth || el.width, height: el.clientHeight || el.height, overflow: 'hidden', position: 'absolute' } }); this.fragment.appendChild(this.element); this.m = [ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]; this.rot = 0; this.state = []; this.path = []; this.delay = 30; this.max = 10; this.i = 0; // from excanvas, subpixel rendering. this.Z = 10; this.Z2 = this.Z / 2; this.arcScaleX = 1; this.arcScaleY = 1; this.currentX = 0; this.currentY = 0; this.miterLimit = this.Z * 1; }, lineWidth: 1, strokeStyle: '#000', fillStyle: '#fff', globalAlpha: 1, globalCompositeOperation: 'source-over', lineCap: 'butt', lineJoin: 'miter', shadowBlur: 0, shadowColor: '#000', shadowOffsetX: 0, shadowOffsetY: 0 }); /* Script: Path.js Dependencies: Canvas.js Author: Olmo Maldonado, Credits: Lightly based from Ralph Sommerer's work: Moderately based from excanvas: Great thanks to Inviz, , for his optimizing help. License: MIT License, */ CanvasRenderingContext2D.implement({ /* A path has a list of zero or more subpaths. Each subpath consists of a list of one or more points, connected by straight or curved lines, and a flag indicating whether the subpath is closed or not. A closed subpath is one where the last point of the subpath is connected to the first point of the subpath by a straight line. Subpaths with fewer than two points are ignored when painting the path. */ /* Property: Empties the list of subpaths so that the context once again has zero subpaths. */ beginPath: function() { this.path = []; this.moved = false; }, /* Property: Creates a new subpath with the specified point as its first (and only) point. */ moveTo: function(x, y) { this.path.push('m', this.coord(x, y)); this.currentX = x; this.currentY = y; this.moved = true; }, /* Property: Does nothing if the context has no subpaths. Otherwise, marks the last subpath as closed, create a new subpath whose first point is the same as the previous subpath's first point, and finally add this new subpath to the path. */ closePath: function() { this.path.push('x'); }, /* Property: Method must do nothing if the context has no subpaths. Otherwise, it must connect the last point in the subpath to the given point (x, y) using a straight line, and must then add the given point (x, y) to the subpath. */ lineTo: function(x, y) { this.path.push((this.moved ? 'l' : ','), this.coord(x, y)); this.currentX = x; this.currentY = y; this.moved = false; }, /* Property: Method must do nothing if the context has no subpaths. Otherwise, it must connect the last point in the subpath to the given point (x, y) using a straight line, and must then add the given point (x, y) to the subpath. */ quadraticCurveTo: function(cpx, cpy, x, y) { var cx = 2 * cpx, cy = 2 * cpy; this.bezierCurveTo( (cx + this.currentX) / 3, (cy + this.currentY) / 3, (cx + x) / 3, (cy + y) / 3, x, y ); }, /* Property: Method must do nothing if the context has no subpaths. Otherwise, it must connect the last point in the subpath to the given point (x, y) using a bezier curve with control points (cp1x, cp1y) and (cp2x, cp2y). Then, it must add the point (x, y) to the subpath. */ bezierCurveTo: function(cp0x, cp0y, cp1x, cp1y, x, y) { this.path.push(' c ', this.coord(cp0x, cp0y), ",", this.coord(cp1x, cp1y), ",", this.coord(x, y) ); this.currentX = x; this.currentY = y; }, /* Property: Method must do nothing if the context has no subpaths. If the context does have a subpath, then the behaviour depends on the arguments and the last point in the subpath. Let the point (x0, y0) be the last point in the subpath. Let The Arc be the shortest arc given by circumference of the circle that has one point tangent to the line defined by the points (x0, y0) and (x1, y1), another point tangent to the line defined by the points (x1, y1) and (x2, y2), and that has radius radius. The points at which this circle touches these two lines are called the start and end tangent points respectively. If the point (x2, y2) is on the line defined by the points (x0, y0) and (x1, y1) then the method must do nothing, as no arc would satisfy the above constraints. Otherwise, the method must connect the point (x0, y0) to the start tangent point by a straight line, then connect the start tangent point to the end tangent point by The Arc, and finally add the start and end tangent points to the subpath. Negative or zero values for radius must cause the implementation to raise an INDEX_SIZE_ERR exception. */ arcTo: function(x, y, w, h) { }, /* Property: Method draws an arc. If the context has any subpaths, then the method must add a straight line from the last point in the subpath to the start point of the arc. In any case, it must draw the arc between the start point of the arc and the end point of the arc, and add the start and end points of the arc to the subpath. The arc and its start and end points are defined as follows: Consider a circle that has its origin at (x, y) and that has radius radius. The points at startAngle and endAngle along the circle's circumference, measured in radians clockwise from the positive x-axis, are the start and end points respectively. The arc is the path along the circumference of this circle from the start point to the end point, going anti-clockwise if the anticlockwise argument is true, and clockwise otherwise. Negative or zero values for radius must cause the implementation to raise an INDEX_SIZE_ERR exception. */ arc: function(x, y, rad, a0, a1, cw) { if(this.rot === 0) rad *= this.Z; var x0 = Math.cos(a0) * rad, y0 = Math.sin(a0) * rad, x1 = Math.cos(a1) * rad, y1 = Math.sin(a1) * rad; if (this.rot !== 0) { var da = Math.PI / 24; this.lineTo(x0 + x, y0 + y); if(cw) { if (a0 < a1) a0 += 2 * Math.PI; while(a0 - da > a1) this.lineTo(x + Math.cos(a0 -= da) * rad, y + Math.sin(a0) * rad); } else { if (a1 < a0) a1 += 2 * Math.PI; while(a0 + da < a1) this.lineTo(x + Math.cos(a0 += da) * rad, y + Math.sin(a0) * rad); } this.lineTo(x1 + x, y1 + y); return; } if (x0 == x1 && !cw) x0 += 0.125; var c = this.getCoords(x, y); this.path.push(cw ? 'at ' : 'wa ', Math.round(c.x - this.arcScaleX * rad) + ',' + Math.round(c.y - this.arcScaleY * rad), ' ', Math.round(c.x + this.arcScaleX * rad) + ',' + Math.round(c.y + this.arcScaleY * rad), ' ', this.coord(x0 + x - this.Z2, y0 + y - this.Z2), ' ', this.coord(x1 + x - this.Z2, y1 + y - this.Z2) ); }, /* Property: method must create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), with those four points connected by straight lines, and must then mark the subpath as closed. It must then create a new subpath with the point (x, y) as the only point in the subpath. Negative values for w and h must cause the implementation to raise an INDEX_SIZE_ERR exception. */ rect: function(x, y, w, h) { this.moveTo(x, y); this.lineTo(x + w, y); this.lineTo(x + w, y + h); this.lineTo(x, y + h); this.closePath(); }, /* Property: Method must fill each subpath of the current path in turn, using fillStyle, and using the non-zero winding number rule. Open subpaths must be implicitly closed when being filled (without affecting the actual subpaths). */ fill: function() { this.stroke(true); }, /* Property: Method must stroke each subpath of the current path in turn, using the strokeStyle, lineWidth, lineJoin, and (if appropriate) miterLimit attributes. Paths, when filled or stroked, must be painted without affecting the current path, and must be subject to transformations, shadow effects, global alpha, clipping paths, and global composition operators. The transformation is applied to the path when it is drawn, not when the path is constructed. Thus, a single path can be constructed and then drawn according to different transformations without recreating the path. */ stroke: function(fill) { if(!this.path.length) return; var a, color; if (fill) { a = [1000, '']; } else { color = this.processColor(this.strokeStyle); a = [10, '']; } this.element.insertAdjacentHTML('beforeEnd', '' + a[1] + '' ); this.parent.appendChild(this.fragment); if(fill && this.fillStyle.img) this.element.getLast().fill.alignshape = false; // not sure why this has to be called explicitly this.path = []; }, /* Property: Method must create a new clipping path by calculating the intersection of the current clipping path and the area described by the current path (after applying the current transformation), using the non-zero winding number rule. Open subpaths must be implicitly closed when computing the clipping path, without affecting the actual subpaths. When the context is created, the initial clipping path is the rectangle with the top left corner at (0,0) and the width and height of the coordinate space. */ clip: function() { }, /* Property: Method must return true if the point given by the x and y coordinates passed to the method, when treated as coordinates in the canvas' coordinate space unaffected by the current transformation, is within the area of the canvas that is inside the current path; and must return false otherwise. */ isPointInPath: function(x, y) { }, processColor: function(col) { //path var a = this.globalAlpha; if (col.substr(0, 3) == 'rgb') { if (col.charAt(3) == "a") { a*= col.match(/([\d.]*)\)$/)[1]; } col = col.rgbToHex(); } return { color: col, opacity: a }; }, /* If a gradient has no stops defined, then the gradient must be treated as a solid transparent black. Gradients are, naturally, only painted where the stroking or filling effect requires that they be drawn. */ processColorObject: function(obj) { var ret = '', col; if(obj.addColorStop) { ret += ((obj.r0) ? ( 'type="gradientradial" ' + 'focusposition="0.2, 0.2" ' + 'focussize="0.2, 0.2" ' ) : ( 'type="gradient" ' + 'focus="0" ' + 'angle="' + (180 + (180 * obj.angle(obj.x0, obj.y0, obj.x1, obj.y1) / Math.PI)) + '" ' )) + 'color="' + obj.col0.color + '" ' + 'opacity="' + obj.col0.opacity * 100 + '%" ' + 'color2="' + obj.col1.color + '" ' + 'o:opacity2="' + obj.col1.opacity * 100 + '%" ' + 'colors="'; if(obj.stops) { for (var i = 0, l = obj.stops.length; i < l; i++) { ret += Math.round(100 * obj.stops[i][0]) + '% ' + obj.stops[i][1]; } } ret += '" '; } else if(obj.img) { //pattern ret += 'type="tile" ' + 'src="' + obj.img.src + '" '; } else { col = this.processColor(obj); ret += 'color="' + col.color + '" ' + 'opacity="' + col.opacity + '" '; } return ret; }, getCoords: function(x, y) { var m = this.m; return { x: this.Z * (x * m[0][0] + y * m[1][0] + m[2][0]) - this.Z2, y: this.Z * (x * m[0][1] + y * m[1][1] + m[2][1]) - this.Z2 }; }, coord: function(x, y) { var m = this.m; return [ Math.round(this.Z * (x * m[0][0] + y * m[1][0] + m[2][0]) - this.Z2), ',', Math.round(this.Z * (x * m[0][1] + y * m[1][1] + m[2][1]) - this.Z2) ].join(''); } }); /* Script: Rects.js Dependencies: Canvas.js, Path.js Author: Olmo Maldonado, Credits: Lightly based from Ralph Sommerer's work: Moderately based from excanvas: Great thanks to Inviz, , for his optimizing help. License: MIT License, */ CanvasRenderingContext2D.implement({ /* Property: clearRect Clears the pixels in the specified rectangle. If height or width are zero has no effect. If no arguments, clears all of the canvas Currently, clearRect clears all of the canvas. */ clearRect: function(x, y, w, h) { //if((x <= 0) && (y <= 0) && ( x + w >= this.element.width) && (y + h >= this.element.height)){ this.element.innerHTML = ''; //} else { // var f0 = this.fillStyle; // this.fillStyle = '#fff'; // this.fillRect(x, y, w, h); // this.fillStyle = f0; //} }, /* Property: fillRect Paints the specified rectangle using fillStyle. If height or width are zero, this method has no effect. */ fillRect: function(x, y, w, h) { this.rect(x, y, w, h); this.fill(); }, /* Draws a rectangular outline of the specified size. If width or height are zero: ?? */ strokeRect: function(x, y, w, h) { this.rect(x, y, w, h); this.stroke(); } }); /* Script: Transform.js Dependencies: Canvas.js Author: Olmo Maldonado, Credits: Lightly based from Ralph Sommerer's work: Moderately based from excanvas: Great thanks to Inviz, , for his optimizing help. License: MIT License, */ CanvasRenderingContext2D.implement({ /* The transformation matrix is applied to all drawing operations prior to their being rendered. It is also applied when creating the clip region. * The transformations must be performed in reverse order. For instance, if a scale transformation that doubles the width is applied, followed by a rotation transformation that rotates drawing operations by a quarter turn, and a rectangle twice as wide as it is tall is then drawn on the canvas, the actual result will be a square. */ /* Property: scale Method must add the scaling transformation described by the arguments to the transformation matrix. The x argument represents the scale factor in the horizontal direction and the y argument represents the scale factor in the vertical direction. The factors are multiples. */ scale: function(x, y) { this.arcScaleX *= x; this.arcScaleY *= y; this.matMult([ [x, 0, 0], [0, y, 0], [0, 0, 1] ]); }, /* Property: rotate Method must add the rotation transformation described by the argument to the transformation matrix. The angle argument represents a clockwise rotation angle expressed in radians. */ rotate: function(ang) { this.rot += ang; var c = Math.cos(ang), s = Math.sin(ang); this.matMult([ [ c, s, 0], [-s, c, 0], [ 0, 0, 1] ]); }, /* Property: translate Method must add the translation transformation described by the arguments to the transformation matrix. The x argument represents the translation distance in the horizontal direction and the y argument represents the translation distance in the vertical direction. The arguments are in coordinate space units. */ translate: function(x, y) { this.matMult([ [1, 0, 0], [0, 1, 0], [x, y, 1] ]); }, /* Property: transform Method must multiply the current transformation matrix with the matrix described by the inputs. */ transform: function(m11, m12, m21, m22, dx, dy) { this.matMult([ [m11, m21, dx], [m12, m22, dy], [ 0, 0, 1] ]); }, /* Property: setTransform Method must reset the current transform to the identity matrix, and then invoke the transform method with the same arguments. */ setTransform: function(m11, m12, m21, m22, dx, dy) { this.m = [ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]; this.transform(m11, m12, m21, m22, dx, dy); }, /* Property: matMult Method to multiply 3x3 matrice. Currently takes input and multiplies against the transform matrix and saves the result to the transform matrix. This is an optimized multiplication method. Will only multiply if the input value is not zero. Thus, minimizing multiplications and additions. */ matMult: function(b) { var m = this.m, o = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ]; for(var i = 0; i < 3; i++) { if(b[0][i] !== 0) this.sum(o[0], this.mult(b[0][i], m[i])); if(b[1][i] !== 0) this.sum(o[1], this.mult(b[1][i], m[i])); if(b[2][i] !== 0) this.sum(o[2], this.mult(b[2][i], m[i])); } this.m = [o[0], o[1], o[2]]; }, mult: function(x, y) { return [x * y[0], x * y[1], x * y[2]]; }, sum: function(o, v) { o[0] += v[0]; o[1] += v[1]; o[2] += v[2]; } }); /* Script: Image.js Dependencies: Canvas.js Author: Olmo Maldonado, Credits: Lightly based from Ralph Sommerer's work: Moderately based from excanvas: Great thanks to Inviz, , for his optimizing help. License: MIT License, */ CanvasRenderingContext2D.implement({ /* Property: drawImage This method is overloaded with three variants: drawImage(image, dx, dy), drawImage(image, dx, dy, dw, dh), and drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh). (Actually it is overloaded with six; each of those three can take either an HTMLImageElement or an HTMLCanvasElement for the image argument.) If not specified, the dw and dh arguments default to the values of sw and sh, interpreted such that one CSS pixel in the image is treated as one unit in the canvas coordinate space. If the sx, sy, sw, and sh arguments are omitted, they default to 0, 0, the image's intrinsic width in image pixels, and the image's intrinsic height in image pixels, respectively. If the image is of the wrong type, the implementation must raise a TYPE_MISMATCH_ERR exception. If one of the sy, sw, sw, and sh arguments is outside the size of the image, or if one of the dw and dh arguments is negative, the implementation must raise an INDEX_SIZE_ERR exception. The specified region of the image specified by the source rectangle (sx, sy, sw, sh) must be painted on the region of the canvas specified by the destination rectangle (dx, dy, dw, dh). Images are painted without affecting the current path, and are subject to transformations, shadow effects, global alpha, clipping paths, and global composition operators. */ drawImage: function (image, var_args) { var args = arguments, length = args.length, off = (length == 9) ? 4 : 0; if(!((length + '').test(/3|5|9/))) throw 'Wrong number of arguments'; var w0 = image.runtimeStyle.width, h0 = image.runtimeStyle.height; image.runtimeStyle.width = 'auto'; image.runtimeStyle.height = 'auto'; var w = image.width, h = image.height; image.runtimeStyle.width = w0; image.runtimeStyle.height = h0; var sx = 0, sy = 0, sw = w, sh = h, dx = args[1 + off], dy = args[2 + off], dw = args[3 + off] || w, dh = args[4 + off] || h; if (length == 9) { sx = args[1]; sy = args[2]; sw = args[3]; sh = args[4]; } var d = this.getCoords(dx, dy), vmlStr = '' ); this.parent.appendChild(this.fragment); }, drawImageFromRect: Function.empty, /* Property: getImageData Method must return an ImageData object representing the underlying pixel data for the area of the canvas denoted by the rectangle which has one corner at the (sx, sy) coordinate, and that has width sw and height sh. Pixels outside the canvas must be returned as transparent black. */ getImageData: function(sx, sy, sw, sh) { }, /* Property: putImageData Method must take the given ImageData structure, and draw it at the specified location dx,dy in the canvas coordinate space, mapping each pixel represented by the ImageData structure into one device pixel. */ putImageData: function(image, dx, dy) { }, getCoords: function(x, y) { var m = this.m; return { x: this.Z * (x * m[0][0] + y * m[1][0] + m[2][0]) - this.Z2, y: this.Z * (x * m[0][1] + y * m[1][1] + m[2][1]) - this.Z2 }; } });